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Stag ewi se Liqui d-Liquid Extract ion Para metric 
Pumping. Equ ili bri um Ana I ysis and Experiments 

DENIS RACHEZ," GERARD DELAVEAU, 
GEORGES GREVILLOT, and DANIEL TONDEURt 
LABORATOIRE DES SCIENCES DU GENIE CHIMIQUE 
CNRS ENSIC 
54042 NANCY, FRANCE 

Abstract 

A staged contacting device adapted from Craig's countercurrent extractor has been 
designed to allow back and forth stepwise displacement of the light liquid phase while 
the heavy liquid phase remains stationary. Thermal parametric pumping experiments 
were run in this staged apparatus, at total reflux, with water as the heavy, stationary 
phase, toluene as the light moving phase, and phenol as the solute distributed linearly 
between the two phases. The transient and steady regimes of this operation are 
investigated by introducing a matrix formalism and studying the properties of 
eigenvalues and eigenvectors. It is shown how this formalism can be extended to more 
complex situations involving nonideal separations and transfer of phases, several 
transfers per half-cycle, and partial reflux. 

1. INTRODUCTION 

Parametric pumping is a separation technique based on the shift of the 
equilibrium distribution of solutes between two phases with a thermodynamic 
parameter, such as pressure, pH, and most often temperature. Figure 1 
illustrates schematically, for the system "water-toluene-phenol'' 
investigated here, that by heating the mixture from 20 to 60°C, phenol is 
transferred from the water to the toluene phase. When a relative movement of 
the two phases is synchronized with the periodic temperature change, 
effluents of different compositions are observed at the extremities of the 
contacting apparatus. 

This technique has been widely investigated with a fixed packed bed of 
adsorbent or ion exchanger being one of the phases (Refs. 1-4, for example). 

*Present address: Centre de Recherches Rhone-Poulenc, 69 150 Decines. France 
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590 RACHEZ ET AL. 

m 
Phenol in toluene 

FIG. 1. Phenol distribution between water and toluene (schematic). Heating the mixtures causes 
transfer of phenol from water to  toluene. 

The principle may be extended from solid-liquid to liquid-liquid equilibria, 
from continuous packed beds to staged arrangements, and from continuous 
flow to discrete transfer to discrete fractions of the phases, and it is the 
purpose of the present paper to illustrate, experimentally and theoretically, 
this triple transposition. The only previous experiments along these lines 
have been presented by Wankat ( 5 ) ,  together with an extensive numerical 
investigation. The first stage model of parametric pumping was presented by 
Wakao (6), and later extensively studied by Grevillot and Tondeur (7-9), 
emphasizing the analogy with distillation at steady state. 

Here, we propose a contribution comprising what we believe are three 
original elements: 

(a) A contacting device adapted from Craig’s extractor (20-29) which 

(b) Experiments with the above apparatus on the system water-toluene- 

(c) A mathematical formalism based on elementary matrix algebra, which 

makes the discrete and stagewise liquid-liquid operation convenient. 

phenol, so far not investigated with respect to parametric pumping. 

is well adapted to such stagewise transient operations. 

2. THE DISCRETE TRANSFER STAGED PARAMETRIC PUMP 

Figure 2 shows the principle of the discrete transfers and equilibrations in a 
three-stage, total reflux parapump, with a single transfer per half-cycle. 
Figure 3 shows a perspective view of the device used for the experiments 
(which has in reality five stages). It consists of a cascade of Craig tubes, but 
each equipped symmetrically with two transfer reservoirs [classical Craig 
tubes involve only one such reservoir, and allow transfer in one direction only 
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Hot  Cold 
Stagel Stage2 Stage3 Product 

Reservoir Reservoir 

s ~ ~ ~ l i ! 2 ?  u 
COLD 
HALF- 
CYCLE 

at 20°C 

of  toluene 

Equilibration 
at 60°C 

Backward 
transfer 

of  toluene 

HOT 
HALF 
CYCLE 

FIG. 2. Flowsheet of a 3-staged total reflux parametric pump: Hatched area, toluene; open area, 
water. To, T I ,  T2, T,: fractions of toluene, moving phase. W I ,  W,, W,: fractions of 

water, stationnary phase. 

FIG. 3. Perspective view of experimental contactor (the contactor used for the experiments has 
five stages). 
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592 RACHEZ ET AL. 

(I0-19)]. The cascade comprises a product reservoir at each end, also 
equipped with a transfer reservoir, Stage number k is connected to the 
forward transfer reservoir (FTR) of stage k - 1 and to the backward transfer 
reservoir (BTR) of stage k + 1 through transfer tubes. When the apparatus is 
horizontal (stages in a horizontal plane), the transfer reservoirs are empty, 
and the two phases are in contact in the stages. 

Figure 4 shows the principle of the transfer. When the system is tilted 90" 
so that the stages are vertical and the F T R s  are at the bottom, the toluene 
phase (fraction Tk, for example) flows into the FTR. Since the latter is 
connected by the transfer tube to stage k + 1, when the system is tilted back 
horizontal, the toluene fraction Tk flows to stage k + 1 (while stage k 
receives fraction Tk- ,  from FTR number k - I ) .  Toluene transfer in the 
opposite direction (from stage k to stage k - 1) is obtained symmetrically by 
tilting the System 90" in the opposite direction so that the BTRs are at the 
bottom, and then back horizontal. 

The tubes are made of glass and held by a metallic frame (not shown on 
figures) mounted on an axis to allow easy rotation for the transfers, but also 
to cause some agitation for better equilibration in the stages. The whole 
system is immerged in a tank with a thermostated water circulation. The 
transfer operations were done manually, and it was found simpler to carry the 
system from a hot tank to a cold tank rather than change the water in the 
same tank. Automated operation is easily conceivable. Each stage is 
equipped with a tapped opening (not shown on figures) which allows 
introduction of material and syringe withdrawals in either phase for analysis. 

3. THE WATEWPHENOVTOLUENE SYSTEM 

The choice of this system was made for convenience on the basis of a 
rough screening of possible extractants of phenol from water likely to be 
sensitive to a temperature change in the range 10 to 60"C, and presenting 
suitable properties of low mutual solubility, low vapor pressure, density, 
toxicity, and cost. It is not assumed that this system is of economical interest. 

The distribution isotherms of phenol between water and toluene, shown in 
Fig. 5 ,  were determined at 20 and 60°C by batch equilibrations in agitated 
thermostated vessels. The analyses were done by gas chromatography (FID 
detector) on a Porapak column around 230°C with 1 pL injections. The 
isotherms may reasonably be assumed linear in the range 0-2 g/L in toluene, 
but the curvature becomes noticeable above 3 g'L. Equilibrium determina- 
tions were also made during the experiments, when the cold temperature was 
below 20°C. 
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toward 
stage k-1- 

FIG. 4. Illustration of toluene transfer mechanism in contacting apparatus. 

4. FORMAL MATHEMATICAL SOLUTION 

Let x?(n) designate the phenol concentration, in grams per liter, in toluene 
fraction numberj  0’ =0, 1, . . . , N) at the cold temperature during cycle n. 
Similarly, y f ( n )  designates the phenol concentration in the water phase at the 
hot temperature in stage k ( k  = 1,2, . . . , N) during cycle n. N designates the 
total number of stages; the number of toluene fractions is thus N + 1. With 
these notations, at the start of cycle n (as represented on Fig. 2), xg(n) is the 

A 

x , phenol concentration in toluene (g/!) 

FIG. 5 .  Distribution equilibria of phenol between water and toluene at 16, 20, and 60°C. 
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594 RACHEZ ET AL. 

concentration in the hot product reservoir. In stage k,  xgn)  is in equilibrium 
at 20°C with yf;-(n). Let T be the volume of the toluene fractions assumed 
equal and constant, and W be the volume of the water fractions, also 
assumed equal and constant. 

We shall establish a relation between the concentrations in cycle n and 
cycle n + 1. To do this, we first write material balances and equilibrium 
relations within cycle n (Eqs. 1 to 7), the index ( n )  of the cycle being omitted 
for simplicity. After a forward transfer, and before any equilibration, stage k 
contains T toluene of concentration xi-, and W water of concentration y i  
After reequilibration at 60°, these concentrations become respectively xt-, 
and y i .  Conservation of phenol implies 

y t  4- p - ,  = yg + pxfk-, ( k  = 1, . . . , N )  (1) 

where p is the ratio of light to heavy phase volumes: 

p =  TIW (2) 

Equilibrium at 20°C at the start of the cycle, and at 60°C after forward 
transfer, is expressed by 

y t  = ahxi-, ( k  = 1, . . . , N )  (4)  

where ac and ah are the slopes of the equilibrium isotherms (Fig. 5) assumed 
linear. When Eqs. ( 3 )  and (4) are substituted into Eq. ( I ) ,  one obtains, after 
rearrangement, 

ac 
Xk., h = __- P x;-, + ---;-xi ( k =  1,.  . . , N )  ( 5 )  

p + ah P + a  

since the last toluene fraction is in the cold product reservoir during the hot 
equilibration, it undergoes no exchange, thus no Concentration change. Thus 

( 6 )  X h  - c 
N -  x N  

Equations ( 5 )  and ( 6 )  form a system of N 4- 1 linear difference equations 
relating the xh's to the xc's. In matrix form, this is expressed by 

X h ( n )  = [ 8 h ] x c (  n )  ( 7 )  

where X h  and X' are the column vectors of the toluene fraction concen- 
trations, and [ 8, ] is the N i- 1 dimensional bidiagonal matrix: 
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STAGEW ISE L IQU I D-LIQU ID EXTRACT10 N 595 

(8) 

A similar analysis for the backward half-cycle leads to a symmetrical 
relation between Xh(n)  and the concentration vector Xc(iz + 1) which 
represents the conditions after the cold reequilibration. Thus at the beginning 
of cycle, n + 1: 

X'(n + 1)  = [ ' , ]Xh(n)  

with 

Equations ( 7 )  and (9) may be combined to yield the sought recurrence over a 
complete cycle: 

X'(n  + 1) = [M]X'(n) (1  1) 

where [MI is the 

[M 

with 

tridiagonal Jacobi 

1 = [ e c l [ e h l  = 

matrix of dimension N + 1: 

a = pah; b = p 2  orah; c = pa'; d = p ( p  + a'); ( 1 3 )  

e = a'(p + a');  p = ( p  4- a')(p + ah) = a + b + c 
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596 RACHEZ ET AL. 

Equation (1 1) is a linear homogeneous first-order difference equation from 
which we have obviously: 

Xc(n) = [M]X(n - 1 )  = [M]*X(n - 2 )  = * * * = [Ml"X'(O) (1  4) 

Equation (14) allows the concentration vector for any cycle to be obtained 
from the initial concentration vector X(0). It may thus be called a solution of 
the conservation equations, and this solution is formally very simple. 
However, the calculation of the nth power of the matrix [MI is not a trivial 
matter if its dimension and M are large. We therefore devote some attention to 
this calculation, which will bring further insight into the physical problem. 

5. CALCULATION OF [MI" 

The calculation of the nth power of a matrix by successive multiplication is 
numerically straightforward, although it may require much time and gives 
little qualitative information. Alternate methods require the calculation of the 
eigenvalues X of [MI for which standard numerical methods exist. In the case 
at hand, much information can be obtained on the eigenvalues by algebraic 
means, and a simple, rapidly converging numerical method can be used (see 
Appendix A and Ref. 20)  owing to  the fact that the matrix is of the Jacobi 
type (that is, tridiagonal). Once the eigenvalues X are known, the elements of 
the corresponding eigenvectors are calculated directly by 

1 
X l k  = - - (d  e - P X k ) X O k  

X 2 k  = - :[(b - p X k ) x l k  + a x O k l  

where a,  b, c, d ,  e ,  andp are given by Eqs. (1 3) .  As usual, the elements of the 
eigenvectors are defined up to a multiplicative factor, here considered to be 
xOk. Designating by [P] the matrix of column eigenvectors, of elements X;k, 

the matrix [MI may now be written in diagonalized form: 

where [A] is the diagonal matrix of eigenvalues. We then have directly 

[MI" = [P][AJ"[P-'] (17 )  
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STAGEWISE LIQUID-LIQUID EXTRACTION 597 

and 

[A]" = 

0 

0 

An equivalent approach is to use Sylvester's theorem (20) which gives 

[MI" = j = O  AJAj] (19) 

where 

adj (AjI - M) 
[Ajl = n(A; - A;) 

i#j 

and adj (AjI - M) is the transpose matrix of cofactors of [AjI - MI, 
independent of n. It is seen that the number of cycles n appears only as the 
powers of the eigenvalues, and this allows a quick qualitative look on how the 
system converges toward its steady state. Here, we shall first try to 
characterize this steady state. 

6. THE CYCLIC STEADY STATE 

The behavior of the system when the number of cycles n becomes large can 
be deduced from a close examination of Eqs. (16) to (20) and of the 
eigenvalues, but also induced from physical reasoning. In Appendix A we 
demonstrate that all eigenvalues of [ MI are real, positive, and smaller than or 
equal to 1. We thus have 

These conclusions are consistent with the following intuitive considerations: 

Any negative eigenvalue would bring a contribution to [MI" that changes 
sign every cycle, leading to an oscillatory behavior of certain concentrations. 
Such a behavior is incompatible with the properties of linear systems. 

Any eigenvalue larger than 1 would lead to an ever-increasing contribution 
to [MI", and to infinite concentrations. 
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598 RACHEZ ET AL. 

Any eigenvalue positive but smaller than 1 has an ever-decreasing 
contribution as n becomes large. If there were no eigenvalue equal to 1, [,MI" 
would tend toward the zero matrix, and all final concentrations would be 
zero. 

Note that this reasoning in no way constitutes a mathematical proof, and 
should rather be taken as an indication that the mathematical problem is well 
posed. 

From Eqs. (14), (1 9), and (20), when n becomes large, the contribution of 
all eigenvalues different from one disappear and the cyclic steady state is 
given by 

[adj ( I  -- M ) ]  
Xc(-) = [M]"X'(O) = XC( 0) (22) n (1 - x i )  

I # N  

More explicit information is obtained by noting that, in the steady state, we 
must have 

XC(n + 1 )  = X ' ( n )  = XYm) (23)  
and that this equality is compatible with Eq. (11) only if X'(m) is an 
eigenvector of matrix (MI. From the discussion above, it must be the 
eigenvector corresponding to A, = 1. Thus the components xTof Xc( 00) are 
calculated by letting A, = AN = 1 in the set of Eqs. (15). It may easily be 
verified that the following relations hold between the concentrations x* thus 
calculated: 

c y c  
P (24)  XS-1 - - - - . . .  X* - . . .  2- XT -- xt -- - 

xT x5 q+ 1 xx ah 

which implies 

xt lx j$  = P N  
This is the equivalent of Fenske's equation, already established in Ref. 9 .  
The steady-state composition vector may then be written, in terms of xt, for 
example: 

X'(m) = 
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An interesting property of this vector is that it is invariant upon multiplication 
on the left by [e,] which, from Eq. (7), entails that 

This means that the compositions of the toluene fractions are the same after 
an equilibration at 60 and at 20°C. In other words, in the cyclic steady state, 
all compositions are constant, and no phenol transfer occurs between phases. 

The geometric interpretation of Relations (24) to (27) in a McCabe- 
Thiele-like diagram is a staircase construction between two straight lines, as 
shown in Figs. 6a  and 6b, and is consistent with previous studies (6-9). The 
steady-state composition vector in Eq. (26) is defined up to the value o f d .  
This parameter (the phenol concentration in toluene fraction To, in the hot 
product Resevoir) is calculated from an overall material balance over the 
system to give (see Appendix B) 

This result is seen to be independent of the initial distribution but to depend 
only on Q, the total mass of phenol present in the system. 

The knowledge of this steady state allows determination of the structure of 
[MI" when n becomes large, as illustrated in Appendix B. 

7. EXAMPLE OF ANALYSIS OF TRANSIENT REGIME 

The equilibrium isotherms (Fig. 5 )  are characterized by the following 
values of the slopes 

At 16°C: aC = 0.70, 

This corresponds to the experimental conditions of Run 1. We have also 

T 26 mL toluene 
26 mL water W 

= 1  P=-= 

and N = 5 since there are five stages. With these values, the matrix [MI is 
written (Eqs. 12 and 13) 
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600 RACHEZ ET AL. 

x c  , phenol concentration in toluene (914) 
FIG. 6a. Relation between mobile phase and stationary phase compositions at the low 

temperature in cyclic steady state (conditions of Run 2). 

xc phenol concentration in cold 1/2 cycle 
FIG. 6b. Relation between compositions in mobile phase in the hot and cold half-cycle in cyclic 

steady state (conditions of Run 2). 
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1 

2.584 
[MI= - 

1.70 1.19 0 0 0 0 
0.52 1.364 0.70 0 0 0 

0 0.52 1.364 0.70 0 0 
0 0 0.52 1.364 0.70 0 
0 0  0 0.52 1.364 0.70 
0 0  0 0 0.52 1.884 

The eigenvalues, calculated as outlined in Section 5, are 

A, = 0.1050 
A ,  = 0.2522 
A, = 0.4838 
A, = 0.7336 
A, = 0.9239 
A, = 1.0000 

These calculations were performed with eight significant figures. 
In Run 1, the initial condition is that all toluene fractions are identical and 

in equilibrium with the water fractions with the following phenol concen- 
trations (i = 0, 1, . . . , N): 

at equilibrium at 16°C 
q = xi(0)  = 1.18 g phenol/L toluene 

y i (0)  = 0.826 g phenol/L water 

so that the total amount of phenol is 

Q = 0.290 gphenol 

Then from Eq. (28) we calculate 

$= 2.324 g phenoVL toluene 

The final steady state is then given by Eq. (26): 

XC(,) = 

x$= 2.324 
xT= 1.726 
xT= 1.282 
xT = 0.953 
xt = 0.708 
xT = 0.526 

Now, we should like to know the composition at an arbitrary cycle n. In 
principle, we would have to calculate [P-'1 in order to use Eqs. ( 17) and ( 18) 
or calculate the [Aj] in order to use Eqs. (19) and (20). We shall see that 
these tedious calculations may be partly avoided if only estimations are 
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602 RACHEZ ET AL. 

sought and for n sufficiently large. Equation (1 7) or (1 9), when developed, 
leads to expressions of the form 

Xc(n)  = 

aooA{ + a o , g  + aO,Aq + ao3X'; + ao4Xz + x8 
+ xT 
+ xT 

. . . . . . . . . . . . . . . . . . .  a p + a  p +  
10 0 I I  1 

a A " +  20 0 . . . . . . . . . . . . . . . . . . . . . . . . . .  

a 40% 

a p 50 0 ............................ 4- x% 

the last column corresponds to Xe( m). Examination of the successive powers 
of the x ' s  shows that the contribution of the smallest eigenvalues rapidly 
becomes negligible. This is illustrated on Fig. 7 where In &'is plotted against 
n. We observe that A: becomes negligible with respect to 1 (%< lop3) as 
early as the third cycle, A; around the fifth cycle, and A; around the tenth 
cycle. The contribution of A, persists until the 20th cycle, and that of A4 until 
the 90th cycle. These contributions are somewhat modified by the factors ai j ,  
but these actually reinforce the importance of the largest eigenvalues. Figure 
8a shows a comparison between the rigorous curve (full line) and the 
approximation obtained by neglecting the contributions of X I ,  A,, A,. This 
relation is expressed by 

X ( n )  - X( a) = qcx: (29)  

with 

C =  

-I .024 
-0.563 
-0.090 
4-0.339 
4-0.540 
+0.6 15 

and q == 1.18 g/L 

It is seen that this approximation, besides showing the correct trend, gives an 
estimate better than 10% for n 1 3, better than 5% for n 1 10, and better 
than 1% for n 2 20. For all practical purposes, it thus seems sufficient to 
calculate the matrix [A,] corresponding to Xi = A, in Eq. (19) or, in other 
terms, to calculate the two lines in [P-'1 that correspond to the two largest 
eigenvalues. 

Note that Eq. (29) is comparable to a result established by Pigford et al. 
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FIG. 7 .  Plot of A; as a function of the number of cycles n (logarithmic ordinate). 

(26) for linear packed bed parapumps after a certain start-up period. Using 
their notation, their Eqs. ( 16) and ( 17) may be put in the form 

which expresses that the “distance” from the steady state for top and bottom 
reservoir concentrations is a power function of the number of cycles. 
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8. DISCUSSION OF EXPERIMENTAL RESULTS 

Experimental Runs 

The experimental procedure is that described in Sections 2 and 3. 
Figures 8a and 8b show calculated curves and experimental points for the 

phenol concentration in the six toluene fractions, and in the five water 
fractions respectively, in Run I .  The measurements were made at the 
beginning of the cycles, after equilibration at  the cold temperature, by syringe 
withdrawals in each phase. The conditions for Run 1 were given in the 
previous section. Similarly, Figs. 9a and 9b show the results of Run 2 for 
which the parameters are 

(r'(2O"C) = 0.66 

ah(60"C) = 0.52 

T = 35 mL of toluene 

W =  26 mL of water 

p = 1.27 

p = 1.35 

I D 1  ' 
n , number or cycles 

FIG. 8a. Transient regime of Run 1: Toluene phase. hgorous solution: Full line. Highest 
eigenvalue approximation: (0 ). Experimental measurements: (X). (Concentrations are 

measured in the cold half-cycle.) 
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L 
1 11 21 30 40 50 c 

n , number of cycles 

FIG. 8b. Transient regime of Run 1: Water phase. Symbols: See Fig. 8a. 

As expected from the smaller value of 0, the maximal separation in Run 2 is 
smaller than in Run 1. 

Dissymetry of Light Phase Transfers 

After about 10 cycles we observed that fraction T5 of toluene had become 
much smaller than the others, and that fractions To and T ,  had become larger. 
This phenomenon amplified to the point that around the 20th cycle 
practically no toluene was left in fraction T5 and the experiment had to be 
interrupted. On the other hand, the volumes of water remained practically 
constant, with a slight excess in the first stages (5% difference between first 
and fifth stage). 

A detailed analysis of the phenomena involved in the light phase transfer 
leads to the following: 

The water level, in vertical position during transfer, is slightly below the 
overflow tube. This entails that no water is transferred, but about 1 cm3 of 
toluene remains stationnary in each stage. 

Evaporation was verified to be negligible, the system being hermetic. 
The solubility difference of water in toluene between 20 and 60°C should 

entail a net transfer of water toward the first stages, of the order of 0.1% per 
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4 I 
S 
c 

v 
X 

20 30 ao 5 0 -  
n, number of $a 

FIG. 9a. Transient regime of Run 2: Toluene phase. Calculated without dead volume: Full line. 
Calculated with dead fraction y = 0.1: dashed line. Experimental Measurements: (X). 

-- .- 

"t 
I 
1 6 11 20 30 40 50 * 

n , number o f  cycles 

FIG. 9b. Transient regime of Run 2: Water phase. Symbols: See Fig. 9a. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
4
2
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1
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cycle. This is consistent with the observation above in direction, but smaller 
in amplitude. 

The dilatation of water from 20 and 60°C is about 1.5%, not enough to 
entail water transfer, but enough to entail a net transfer of toluene of the same 
amount at each cycle, thus 15% after 10 cycles, toward the first stages. 

A slight dissymmetry of the tubes on one side can explain an important and 
cumulative net transfer. Suppose the volume available in the vertical 
position, up to the overflow tube, is smaller by 1.5% on the side of the 
backward transfer reservoirs. This implies an excess of toluene transfer in the 
backward direction, thus toward the first stages, of about 15% in 10 cycles. 

The two latter effects (dilatation and dissymmetry) may explain the net 
transfer of toluene observed, which is in the average about 30% in 10 cycles. 
These effects may be in principle offset by a proper adjustment of the holdup 
volumes of the stages. This was tried by working the glass of the apparatus, 
and resulted in a net transfer of toluene in the opposite direction! It is 
expected that this net transfer of light phase would be a lesser problem in a 
partial reflux system. 

Other Uncertainties 

The cold source was not thermostated, and varied by 2 to 3°C during the 
experiments. This is expected to have a nonnegligible effect, but was not 
corrected for. The equilibrium determinations were delicate due to having to 
take samples with a syringe at two different temperatures from two different 
phases with different dilatation coefficients. The dilatation effects were eval- 
uated and accounted for, but errors remain due to evaporation at 60". The 
time allowed for equilibration between a temperature change and a transfer 
was set to 5 min after trials which indicated that no composition change was 
meaningfully detected after that time. 

The purely analytical uncertainty (of the order of 2%) is expected to be 
small with respect to the uncertainty above. 

Conclusion 

In spite of these various uncertainties, the experimental data seem to agree 
reasonably with the calculations, at least for a small number of cycles (6 or 
11). The more important discrepancy observed in Run 1 for 21 cycles is 
attributed to the volume variation of the toluene fractions (fraction T, had 
practically disappeared at Cycle 21), entailing a variation of p and thus of the 
elements of the matrix [MI from cycle to cycle. 
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9. EXTENSION OF THE THEORETICAL APPROACH 

The preceding discussion illustrates that in any real experiment we would 
be faced with imperfect phase transfer, volume variations of the fractions, 
volume differences in the stages, etc. In addition, the mode of parametric 
pumping considered here is restrictive; it ignores partial reflux and multiple 
transfers per half-cycle, situations studied elsewhere (8, 9) from the point of 
view of the cyclic steady state. W e  should like to give a hint on how the 
present approach can be extended, without major difficulty, to account for 
some of the situations mentioned above. For this purpose we shall examine 
how the basic equations are altered separately by the different effects. 

Existence of a Dead Volume of Light Phase 

In the experiments presented, we mentioned that about 1 cm3 of toluene 
was not transferred when the apparatus was tilted to the vertical position. Let 
us characterize this “dead volume” D by its ratio y to the volume of the water 
fractions. 

y = D / W  (30)  

and we suppose this ratio is constant and the same for all stages in forward 
and backward transfer. When the material balances (Eqs. 1) are rewritten 
taking this hold-up into account, one obtains the same form as Eq. ( 5 )  but 
with p replaced by p - y,  a‘ by ac + y and ah by ah 4- y (so that the 
denominator p + ah in Eq. 5 is unchanged). A similar property holds for the 
backward half-cycle, and finally the whole approach outlined so far remains 
valid providing the substitutions indicated above are made in the elements of 
the matrix [MI. The discontinuous lines in Figs. 9a and 9b show the result of 
such a calculation, made with a 10% dead volume of solvant (y = 0.1) which 
slightly overestimates reality. 

Intuitively, the effect of y can be foreseen by considering the system as 
having a lower p and higher a’s but a lower effective p. The effect on the 
cyclic steady state is seen immediately from Fenske’s equation (eq. 25), with 
the data of Run 2: 

ac + y = 3.29 for y = 0 
= 2.77 for y = 0.1 

__-  

The effect of a smaller p and larger a’s is favorable to speed of convergence 
but may be offset by the decrease in p. 
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Unequal Volumes of Fractions 

A simple modification accounts for the volume of water being different in 
each stage and the volumes of each toluene fraction being different, providing 
these volumes are constant (same volume transferred back and forth). It 
suffices to take a different Pk for each stage and for equilibrations at different 
temperatures. In the forward matrix [Oh] (Eq. 8), the unique p will be 
replaced by p i ,  different in each line, and similarly, in matrix [6,], p i  will be 
introduced. The product matrix [MI remains tridiagonal, and the methods for 
eigenvalues and eigenvector calculations are unchanged. All the other 
properties mentioned still hold. 

Volume Variations of Phases 

As discussed earlier, important variations of the volume of the toluene 
fractions may be caused by a geometric dissymmetry of the apparatus in 
forward versus backward transfer and by dilatation of the water phase. These 
effects can be quantified and accounted for in writing the material balances. 
Unfortunately, they will cause the value of p to change in each stage and at 
each cycle. There is therefore no unique matrix [MI and the approach 
presented fails to apply. 

Several Transfers per Half-Cycle 

Supoose the apparatus used in the present work was equipped with an 
additib,.al reservoir in series at each end. Then seven toluene fractions would 
be used, and there would be two successive transfers in the same direction at 
each temperature. The cyclic steady state of such systems has been 
extensively studied (8 ) .  The matrix formalism can be used conveniently by 
noting that each transfer of light phase followed by an equilibration is 
described by a bidiagnoal matrix similar to [ ec] or [Oh]. Let us consider for 
example a parapump with two stages and four light phase fractions, thus two 
transfers per half-cycle. By an approach similar to that leading to Eq. (1  l), it 
is shown that the matrix [MI describing the complete cycle is the product of 
the successive bidiagonal matrices describing each transfer: 

where 
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-/I ac 0 0 1 

61 0 

1 
led1 = 

1 o 0 0 p + a h  O 0 J ierli=p+z 
0 0 0 p + a h  - 

P f a '  0 0 0 1  

J 

p + a h  0 0 0 
ah P O 0  
0 a h p  0 
0 0 O p + a '  

' p + a ' O  0 0 
0 p a c  0 

o o p  a' 
0 0 0 p + a  

[MI is no longer tridiagonal but, in the present case, comprises five diagonals. 
The simple numerical methods for calculating eigenvalues and eigenvectors 
of tridiagonal matrices no longer apply, but otherwise the general method is 
unchanged. Notice also that different definitions of [MI may be introduced, 
depending on how the beginning of the cycle is defined. These various forms 
differ from each other by a circular permutation on the bidiagonal matrices 
101. 

Partial Reflux Parapump 

We adopt the description given by Grevillot (9) for one transfer per half- 
cycle in a pump where fresh feed is added at each half-cycle in an 
intermediate stage and with a different reflux ratio at each end. The operating 
scheme of such a pump is summarized on Fig. 10. The equations describing 
the operation of the lower section during the cold half-cycle and the upper 
section during the hot half-cycle are that of the simplest case; that is, Eqs. ( 1 )  
to (10). The other equations are those for a hold-up y in each stage, as 
explained in a previous paragraph ( p  replaced by p - y ,  a by a + y). Special 
material balances must be written for the feed stage. The result may be 
written in the following form: 

where [ O h ]  and [ 0,] are bidiagonal matrices and F, and F, are column vectors 
representing the feed contribution. Table 1 below gives the elements of these 
matrices and vectors, corresponding to the stages in which the conservation 
and equilibrium relations are written. All other elements are zero. 
xF is the feed composition, assumed constant here. The feed vectors Fhand 

F, have each a single nonzero element, owing to the fact that the feed is added 
in a given single stage. The nonzero element is not on the same line in the two 
vectors because the feed is mixed with a different mobile-phase fraction in 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
4
2
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



STAGEW ISE Ll QU I D-LI QU I D EXTRACT1 0 N 61 1 

Q 4 
c 

0 

r 
U + 
P 

I- .- 
0 e 
2 
* 

u u 

m 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
4
2
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



61 2 RACHEZ ET AL. 

t 
TOP ser 

Feed Stage 

Bottom 
Section 

t 

I 

Forward (Cold) Backward (Hot) 
half- cycle half- cycle 

FIG. 10. Operating scheme of partial reflux staged parapump. 

the hot and cold steps. Note that a feed distributed over several stages can be 
accounted for by the same Eqs. (32) and (33), but different elements in the 
matrices [e,] and 119~1, and additional nonzero elements in F, and F,. 

The general solution of the first-order recurrence of Eqs. (32) and (33), 
relating Xc(n + 1 )  to Xr(n), is easily seen to be 

Xc(n) = [M]”X‘(O) + [ I  4- M + M 2 + .  . . + M“--’ ][Fc + [eclFhl (34) 

where [MI = [e,][eh]. Equation (34) is to be compared to Eq. (14) (note that 
[MI is not the same in these two equations). The matrix [MI is still 
tridiagonal and the methods for calculating the eigenvalues remain valid. The 
geometric matrix series [I -I- M + M2 + - * * 4- Mn-l] can be rewritten by 
applying Sylvester’s theorem (Eqs. 19 and 20) to each term, so that a scalar 
geometric series appears on each eigenvalue. If all A’s are different from 1, 
Eq. (34) becomes 

1 -- x j  
N 

j =O 
X ( n )  = c [Aj] (35) 
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where [A,] are matrices obtained from [MI by applying Eq. (20) and F is the 
overall feed vector, given by 

0 

- 0 

X F  F = F, + [e,]Fh = 
( P  + a')(P + ah> 

the two nonzero elements of F are on linesf andf+ 1. 
If any eigenvalue was larger than or equal to 1, the series I + M + * * + M"-' would not converge and no steady state would be reached. 

On physical grounds, we may thus state that all eigenvalues are smaller than 
1. Under these conditions the cyclic steady state is not obtained directly as 
an eigenvector of [MI, but by letting X ( n  + 1) = X ( n )  in Eq. (33) or 
n - m in Eq. (35): 

We know from a previous publication (9)  that the cyclic steady state can be 
geometrically represented by a McCabe-Thiele diagram somewhat more 
complicated than that of total reflux (Figs. 6a  and 6b), and that the analytical 
expressions for the separation factor are quite involved. There is thus little 
hope to bring Eq. (36) to a more analytical form by simple manipulations. 

APPENDIX A: CALCULATION OF EIGENVALUES OF 1 M 1 (20) 

The eigenvalues of [MI are calculated from the equation 

PdX) = det I M - XI 1 = 

- 
d-pX e 0 0 0 

a b-pX c 0 0 
0 a b-pX c 0 
0 0 a b -pX c 0 
0 0 0 a b-pX c 
0 0 0 0 a a f b - p X  - 

Since the determinant is tridiagonal, it may be expanded easily by elements 
of the last column for example. Let P,,-,(A) be the determinant obtained by 
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deleting the last row and the last column, and let PN-J{X) be the determinant 
obtained by deleting the j last rows and columns. We then have (withN = 6) 

A trial value of X is assumed and the successive expressions Pi(i = 1 to N) 
are calculated. An eigenvalue is found when PN(A) = 0. 

The localization of the eigenvalues, and thus the trial values, is facilitated 
by the fact that the expressions Pi form a Sturin series which permits the 
following test: Assume a value A’ and calculate the sequence Po. . . PN Let 
V( A’) be the number of sign changes in this series. Assume another trial value 
Xr and determine in the same way the number of sign changes in the sequence 
V(A”). The difference V(A’) - V(A”) gives the number of real eigenvalues in 
the interval (A’, A”). This property may be used to show that all eigenvalues 
are real. We assume A’ very large and positive and A” very large and 
negative. It is then easy to see that 

A’ >> 0 
P,= 1 > 0 
P ,  = d -pX < 0 
PZ = ( b  -pX)P l  - 
P ,  < 0 
P,> 0 
P5 < 0 
P ,  > 0 

A” << 0 
P,= 1 > o  
P ,  = d - -PA > 0 
P2 = ( b  -pX)P1 
P ,  > 0 
P ,  > 0 
P ,  > 0 
Pg> 0 

ac > 0 ac > 0 

The numbers of sign changes are V ( k )  = N and V(A”) = 0, and the number 
of real eigenvalues, positive or negative, is N .  Thus all eigenvalues are real. 

The Sturm sequence (A2) may also conveniently be used to show that 
X = 1 is an eigenvalue. For X = 1, we have 
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P o = l > O  
P , = d  - p =  - ah(p + a') < O 
P2 = ( b  - p ) P ,  - ac  = - aP,  
P3 = ( b  - p ) P 2  - acP,  = -aP, -cP2-acPl  = -aP2 
Pj = ( b  - p)Pj-l - acPjT2= -aPj-l -cPj- ,  -acPj-2 

and since 

PjPl  = -aP.  J - 2  

we have 

p . =  -aP. 
J J - 1  

For the last polynomial PN, which represents the characteristic equation, we 
have 

with 

a + b - p  = -c 

thus 

PN= 0 

and A =  1 satisfies the characteristic equation and is thus an eigenvalue, 
independent of the values of the parameters. Incidentally, this calculation 
shows that V(A" = 1) = N - 1 .  Since V(x'  >> 0) = N ,  there is a single real 
root in the interval (4-1, +-) which is precisely X = 1. No eigenvalue can 
thus have a value larger than 1 .  A somewhat more tedious calculation can be 
made for A" =0, showing that V (A" = 0) = 0. This ensures that all 
eigenvalues are positive, and finally, we must have 

APPENDIX B: THE STRUCTURE OF [MI" 

For large values of n, that is, at cyclic steady state, [MI" must satisfy the 
N 4- 1 equations 
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[M]'X(O) = X(m) (B1)  
independently of the initial distribution X(0). The concentrations 
(q,, q l , .  . . .  qN)  of X(O), and the concentration (x& xT, . . . .  xg) of X(m) 
are related only by the condition of conservation of the mass of solute in the 
whole system. This condition is expressed by: 

I N N 

Q= W [  pqo+ , c = I  ( p  +u')qd = W [  px$ + i x = I  (p  + u')x) ( B 2 )  

Replacing xyby x$PP-' from Eq. (24), factoring out x$ in the right-hand side, 
and reorganizing, we obtain 

N 

i - 1  
A q ,  + BC q j  = x$ 0 3 3 )  

where 

p + a' 
A =  N 9 A (B4) B =  -- P 

P p + ( p  + 0') x p - k  
k = I  

Clearly the N + 2 equations (Bl )  and (B3) may hold for any set of qj  only if 
they are redundant. We may thus identify, for example, (B3) with the ith 
equation of (Bl),  which we write (i = 0, 1, . . . .  N) 

mioqo + m i l q l  + . . .  + m i H N  == xT= x@-' ( B 4 )  

and we obtain 

A for j=  0 c B f o r j =  I ,  . . . .  N 
m,jp' = 

The elements mIi of [MI" are thus completely identified by Eq. (B6), together 
with (B4). [MI" may be visualized as 

[MI" = 

A B B .B . . . . . . . . . . . . . . . . . . .  
AP-1 Bp-1 BP-1 . . . . . . . . . . . . . . . . .  Bp-' 
Ap-2 Bp-2 BP-2 . . . . . . . . . . . . . . . .  .3p-*  

ApPN Bp-N .......................... Bp-N 
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It may be verified that this matrix is invariant on multiplication on the left or 
on the right by [MI. 

It is interesting to look at the other possible approach starting from Eq. 
(1 7): 

[MI" = [P][A]"[P-'] (B8)  

Clearly A" reduces to the single element 1 in the last row and last column, all 
other elements being zero. The product [P][A]" is a matrix with the first N 
columns of zeroes, the last column being the last column of [PI; that is, the 
eigenvector belonging to X = 1. Multiplying this matrix by [P-'1, we should 
recover the result of Eq. (B7). I t  is easy to show that the only elements of 
[P-'1 that appear in the product are the elements of the last row, which are 
the cofactors of the above-mentioned eigenvector in [PI. Identifying with 
(B7), we conclude that the last row of [P-l] is (ABB . . . B). 

a, b, c, d, e, p 

n 
N 
Pi(X) 

SYMBOLS 

coefficients in material balance equations, defined by Eq. 
(1 3) (dimensionless) 
quantities defined by Eq. (B4) (Appendix B) 
elements of matrix [MI", defined in Appendix B 
(dimensionless) 
number of cycles (dimensionless) 
total number of stages (dimensionless) 
minor determinants of matrix (M = XI), defined by Eq. 
(A2) (Appendix A) (dimensionless) 
initial values of xo, xl, . . . , x N  (g/L) 
total mass of phenol present in the system (g) 
volume of toluene fractions (L) 
volume of water fractions (L) 
phenol concentration in toluene (mobile phase) fraction 
numberj (j = 0, 1, . . . , N), in cycle number n (g/L) 
values of x j  in cyclic steady state (g/L) 
ith component of the kth eigenvector (i = 1,2 ,  . . . , N, 
k = 0 , 1 ,  ..., N)definedbyEq.(15)(g/L) 
phenol concentration in feed for open parapump (g/L) 
phenol concentration in water (stationnary phase) in 
stage number k (k = 1,2,  . . . , N) and in cycle number n 
( d L )  
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Greek Letters 

ffc, ah 

P 

slopes of the equilibrium isotherms (concentration in 
water versus concentration in toluene) at  the cold and 
the warm temperature, respectively (dimensionless) 
relative thermal affinity defined by Eq. (24) (dimension- 
less) 
dead volume ratio, defined by Eq. (30) (dimensionless) 
eigenvalues of matrix [MI (dimensionless) 
ratio of volumes of toluene fraction to water fraction 
defined by Eq. (2) (dimensionless) 

Vector and Matrix Quantities 

I41 
C 
F,, F,, 

matrices defined by Eq. (20) 
column vector defined by Eq. (29) 
feed vectors in open parapump, defined by Eqs. (33) 
unity matrix 
matrices of coefficients in material balance equations, 
defined by Eqs. (8), (lo), and (12) 
matric of column eigenvectors of [MI, and inverse 
column vector of phenol concentrations in toluene frac- 
tions (x,, xI, . . . , x N )  

111 
IMI, 181 

[PI, W'I 
X 

[A1 diagonal matrix of eigenvalues 

Indices, Subscripts, and Superscripts 

*, ( w )  
c, h 

( n )  number of cycles 
i j ,  k 

define the cyclic steady-state 
designate variables defined at the cold temperature and 
at the hot temperature, respectively 

refer to number of a toluene or water fraction 
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