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Pumping. Equilibrium Analysis and Experiments
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GEORGES GREVILLOT, and DANIEL TONDEUR'

LABORATOIRE DES SCIENCES DU GENIE CHIMIQUE

CNRS ENSIC
54042 NANCY, FRANCE

Abstract

A staged contacting device adapted from Craig’s countercurrent extractor has been
designed to allow back and forth stepwise displacement of the light liquid phase while
the heavy liquid phase remains stationary. Thermal parametric pumping experiments
were run in this staged apparatus, at total reflux, with water as the heavy, stationary
phase, toluene as the light moving phase, and phenol as the solute distributed linearly
between the two phases. The transient and steady regimes of this operation are
investigated by introducing a matrix formalism and studying the properties of
eigenvalues and eigenvectors. It is shown how this formalism can be extended to more
complex situations involving nonideal separations and transfer of phases, several

transfers per half-cycle, and partial reflux.

1. INTRODUCTION

Parametric pumping is a separation technique based on the shift of the
equilibrium distribution of solutes between two phases with a thermodynamic
parameter, such as pressure, pH, and most often temperature. Figure 1
illustrates schematically, for the system ‘“water—toluene-phenol”
investigated here, that by heating the mixture from 20 to 60°C, phenol is
transferred from the water to the toluene phase. When a relative movement of
the two phases is synchronized with the periodic temperature change,
effluents of different compositions are observed at the extremities of the

contacting apparatus.

This technique has been widely investigated with a fixed packed bed of
adsorbent or ion exchanger being one of the phases (Refs. /-4, for example).
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F1G. 1. Phenol distribution between water and toluene (schematic). Heating the mixtures causes
transfer of phenol from water to toluene.

The principle may be extended from solid-liquid to liquid-liquid equilibria,
from continuous packed beds to staged arrangements, and from continuous
flow to discrete transfer to discrete fractions of the phases, and it is the
purpose of the present paper to illustrate, experimentally and theoretically,
this triple transposition. The only previous experiments along these lines
have been presented by Wankat (5), together with an extensive numerical
investigation. The first stage model of parametric pumping was presented by
Wakao (6), and later extensively studied by Grevillot and Tondeur (7-9),
emphasizing the analogy with distillation at steady state.

Here, we propose a contribution comprising what we believe are three
original elements:

(a) A contacting device adapted from Craig’s extractor (/0-19) which
makes the discrete and stagewise liquid-liquid operation convenient.

(b) Experiments with the above apparatus on the system water-toluene—
phenol, so far not investigated with respect to parametric pumping.

(c) A mathematical formalism based on elementary matrix algebra, which
is well adapted to such stagewise transient operations.

2. THE DISCRETE TRANSFER STAGED PARAMETRIC PUMP

Figure 2 shows the principle of the discrete transfers and equilibrations in a
three-stage, total reflux parapump, with a single transfer per half-cycle.
Figure 3 shows a perspective view of the device used for the experiments
(which has in reality five stages). It consists of a cascade of Craig tubes, but
each equipped symmetrically with two transfer reservoirs [classical Craig
tubes involve only one such reservoir, and allow transfer in one direction only
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FIG. 2. Flowsheet of a 3-staged total reflux parametric pump: Hatched area, toluene; open area,
water. Tg, T, T, Tx: fractions of toluene, moving phase. W, W,, Wi: fractions of
water, stationnary phase.
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FI1G. 3. Perspective view of experimental contactor (the contactor used for the experiments has
five stages).
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(10-19)j. The cascade comprises a product reservoir at each end, also
equipped with a transfer reservoir, Stage number k is connected to the
forward transfer reservoir (FTR) of stage k — 1 and to the backward transfer
reservoir (BTR) of stage k¥ + 1 through transfer tubes. When the apparatus is
horizontal (stages in a horizontal plane), the transfer reservoirs are empty,
and the two phases are in contact in the stages.

Figure 4 shows the principle of the transfer, When the system is tilted 90°
so that the stages are vertical and the FTR’s are at the bottom, the toluene
phase (fraction T, for example) flows into the FTR. Since the latter is
connected by the transfer tube to stage £ + 1, when the system is tilted back
horizontal, the toluene fraction T, flows to stage & -+ 1 (while stage k
receives fraction T, from FTR number &k — 1). Toluene transfer in the
opposite direction (from stage k to stage k — 1) is obtained symmetrically by
tilting the System 90° in the opposite direction so that the BTR’s are at the
bottom, and then back horizontal.

The tubes are made of glass and held by a metallic frame (not shown on
figures) mounted on an axis to allow easy rotation for the transfers, but also
to cause some agitation for better equilibration in the stages. The whole
system is immerged in a tank with a thermostated water circulation. The
transfer operations were done manually, and it was found simpler to carry the
system from a hot tank to a cold tank rather than change the water in the
same tank, Automated operation is easily conceivable. Each stage is
equipped with a tapped opening (not shown on figures) which allows
introduction of material and syringe withdrawals in either phase for analysis.

3. THE WATER/PHENOL/TOLUENE SYSTEM

The choice of this system was made for convenience on the basis of a
rough screening of possible extractants of phenol from water likely to be
sensitive to a temperature change in the range 10 to 60°C, and presenting
suitable properties of low mutual solubility, low vapor pressure, density,
toxicity, and cost. It is not assumed that this system is of economical interest.

The distribution isotherms of phenol between water and toluene, shown in
Fig. 5, were determined at 20 and 60°C by batch equilibrations in agitated
thermostated vessels. The analyses were done by gas chromatography (FID
detector) on a Porapak column around 230°C with 1 uL injections. The
isotherms may reasonably be assumed linear in the range 0-2 g/L in toluene,
but the curvature becomes noticeable above 3 g/L. Equilibrium determina-
tions were also made during the experiments, when the cold temperature was
below 20°C.
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Fia. 4, Illustration of toluene transfer mechanism in contacting apparatus.

4. FORMAL MATHEMATICAL SOLUTION

Let xj(n) designate the phenol concentration, in grams per liter, in toluene
fraction numberj (f =0, 1, ..., N) at the cold temperature during cycle ».
Similarly, y%(n) designates the phenol concentration in the water phase at the
hot temperature in stage k (k = 1,2, ..., N) during cycle n. N designates the
total number of stages; the number of toluene fractions is thus N + 1. With
these notations, at the start of cycle n (as represented on Fig. 2), x{(n) is the

y. phenol concentration in water (g/?)

s 5 5

X, phenn;l concentration in tokuene {3/

F1G. 5. Distribution equilibria of phenol between water and toluene at 16, 20, and 60°C.
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concentration in the hot product reservoir. In stage &, xi(n) is in equilibrium
at 20°C with yj(n). Let T be the volume of the toluene fractions assumed
equal and constant, and W be the volume of the water fractions, also
assumed equal and constant.

We shall establish a relation between the concentrations in cycle n and
cycle n + 1. To do this, we first write material balances and equilibrium
relations within cycle n (Egs. 1 to 7), the index () of the cycle being omitted
for simplicity. After a forward transfer, and before any equilibration, stage k&
contains 7 toluene of concentration xj_, and W water of concentration yf,
After reequilibration at 60°, these concentrations become respectively x/_,
and y}. Conservation of phenol implies

Vi+ pxio = yi+ pxio (k=1,...,N) (1)
where p is the ratio of light to heavy phase volumes:
p=T/W (2)

Equilibrium at 20°C at the start of the cycle, and at 60°C after forward
transfer, is expressed by

Yi=eaxi  (k=1,...,N) (3)

yh=a’xt_, (k=1,...,N) (4)

where a° and o” are the slopes of the equilibrium isotherms (Fig. 5) assumed
linear. When Egs. (3) and (4) are substituted into Eq. (1), one obtains, after
rearrangement,

p af
Xt = = Xp—) F T X k=1,...,N 5
k=1 o+ a k-1 p+a,,xk ( ) (5)

since the last toluene fraction is in the cold product reservoir during the hot
equilibration, it undergoes no exchange, thus no concentration change. Thus

Xk = x5 (6)

Equations (5) and (6) form a system of N + 1 linear difference equations
relating the x"’s to the x®s. In matrix form, this is expressed by

X'(n) = [0,1X(n) (7)

where X" and X¢ are the column vectors of the toluene fraction concen-
trations, and [ 4, ] is the N + 1 dimensional bidiagonal matrix:
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A similar analysis for the backward half-cycle leads to a symmetrical
relation between X’(n) and the concentration vector X¢(n + 1) which
represents the conditions after the cold reequilibration. Thus at the beginning
of cycle, n + 1:

X(n + 1) = [0.]X*(n) (9
with
pta
~ 0
o) ——L | = (10)
o+ af oo
0o &

Equations (7) and (9) may be combined to yield the sought recurrence over a
complete cycle:

Xn + 1) = [M]Xn) (11)
where [M] is the tridiagonal Jacobi matrix of dimension N + 1:
- Je -
abec 0
M) = (610, = | “°° (12)
A N \\ \\ N . c
L 0 a a+tb]

with

b=p'+a‘e’  c=pat  d=plp+a); (13)
p=(p+a)Ypo+ah=a+b+c

a=pa”

e=a‘(p + a);
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Equation (11) is a linear homogeneous first-order difference equation from
which we have obviously:

X(n) = [M]X(n — 1) = [M]’X(n —2) = -+ = [M]"X(0) (14)

Equation (14) allows the concentration vector for any cycle to be obtained
from the initial concentration vector X(0). It may thus be called a solution of
the conservation equations, and this solution is formally very simple.
However, the calculation of the nth power of the matrix [M] is not a trivial
matter if its dimension and # are large. We therefore devote some attention to
this calculation, which will bring further insight into the physical problem.

5. CALCULATION OF [M]"”

The calculation of the nth power of a matrix by successive multiplication is
numerically straightforward, although it may require much time and gives
little qualitative information. Alternate methods require the calculation of the
eigenvalues A of [M] for which standard numerical methods exist. In the case
at hand, much information can be obtained on the eigenvalues by algebraic
means, and a simple, rapidly converging numerical method can be used (see
Appendix A and Ref. 20) owing to the fact that the matrix is of the Jacobi
type (that is, tridiagonal). Once the eigenvalues A are known, the elements of
the corresponding eigenvectors are calculated directly by

1
Xy = g(d — PAp)Xor

Xop = _l[(b = PpA)X1 T oaxel

¢

1
X = — 46— PAIX 1k T ax; g4l (15)
XN ™ "%[(b —PADXN-1 kT axy-axl k=0,1,...,N

where a, b, ¢, d, e, and p are given by Eqs. (13). As usual, the elements of the
eigenvectors are defined up to a multiplicative factor, here considered to be
Xgr. Designating by [P] the matrix of column eigenvectors, of elements x;,
the matrix [M} may now be written in diagonalized form:

[M] = [P][A][P7] (16)
where [A] is the diagonal matrix of eigenvalues. We then have directly

[M]" = [PI[A]"[P7] (17)
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and

[A]"= : (18)

An equivalent approach is to use Sylvester’s theorem (20) which gives

M) = 2 1A (19)
where
(A = adj (A1 — M) (20)
Iy — )
i#]

and adj (Ad —M) is the transpose matrix of cofactors of [Ad— M],
independent of n. It is seen that the number of cycles n appears only as the
powers of the eigenvalues, and this allows a quick qualitative look on how the
system converges toward its steady state. Here, we shall first try to
characterize this steady state.

6. THE CYCLIC STEADY STATE

The behavior of the system when the number of cycles #n becomes large can
be deduced from a close examination of Egs. (16) to (20) and of the
eigenvalues, but also induced from physical reasoning. In Appendix A we
demonstrate that all eigenvalues of [M] are real, positive, and smaller than or
equal to 1. We thus have

0<}\0<>\1<"'<AN=1 (21)
These conclusions are consistent with the following intuitive considerations:

Any negative eigenvalue would bring a contribution to [M]" that changes
sign every cycle, leading to an oscillatory behavior of certain concentrations.
Such a behavior is incompatible with the properties of linear systems.

Any eigenvalue larger than 1 would lead to an ever-increasing contribution
to [M]", and to infinite concentrations.
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Any eigenvalue positive but smaller than 1 has an ever-decreasing
contribution as n becomes large. If there were no eigenvalue equal to 1, [M]"
would tend toward the zero matrix, and all final concentrations would be
Zero.

Note that this reasoning in no way constitutes a mathematical proof, and
should rather be taken as an indication that the mathematical problem is well
posed.

From Egs. (14), (19), and (20), when n becomes large, the contribution of
all eigenvalues different from one disappear and the cyclic steady state is
given by

Xe() = [M]x(0) = LA L= My ) (22)
IT 1 =)

More explicit information is obtained by noting that, in the steady state, we
must have

Xi(n + 1) = X(n) = X(=) (23)

and that this equality is compatible with Eq. (11) only if X9~) is an
eigenvector of matrix [M]. From the discussion above, it must be the
eigenvector corresponding to Ay = 1. Thus the components x¥of X‘(~) are
calculated by letting A, = Ay =1 in the set of Eqgs. (15). It may easily be
verified that the following relations hold between the concentrations x* thus
calculated:

o x|
pr " ry o o B (24)
which implies
x¥/x% = BN (25)

This is the equivalent of Fenske’s equation, already established in Ref. 9.
The steady-state composition vector may then be written, in terms of x§, for
example:

x3 B!

xt B2 (26)
Xie)y= | | =xf |~
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An interesting property of this vector is that it is invariant upon multiplication
on the left by [6,] which, from Eq. (7), entails that

X'(=) = X9() (27)

This means that the compositions of the toluene fractions are the same after
an equilibration at 60 and at 20°C. In other words, in the cyclic steady state,
all compositions are constant, and no phenol transfer occurs between phases.

The geometric interpretation of Relations (24) to (27) in a McCabe-
Thiele-like diagram is a staircase construction between two straight lines, as
shown in Figs. 6a and 6b, and is consistent with previous studies (6—9). The
steady-state composition vector in Eq. (26) is defined up to the value of x§.
This parameter (the phenol concentration in toluene fraction 7, in the hot
product Resevoir) is calculated from an overall material balance over the
system to give (see Appendix B)

QW
pt(p+a)p™

x§= (28)

This result is seen to be independent of the initial distribution but to depend
only on @, the total mass of phenol present in the system.

The knowledge of this steady state allows determination of the structure of
[M]” when n becomes large, as illustrated in Appendix B.

7. EXAMPLE OF ANALYSIS OF TRANSIENT REGIME

The equilibrium isotherms (Fig. 5) are characterized by the following
values of the slopes

At 16°C: a‘=0.70,

= 1.346

=
1

[
At 60°C: at=0.52,

This corresponds to the experimental conditions of Run 1. We have also

T 26 mL toluene

p = pe— = 1
w 26 mL water

and N = 5 since there are five stages. With these values, the matrix [M] is
written (Eqs. 12 and 13)
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F1G. 6a. Relation between mobile phase and stationary phase compositions at the low
temperature in cyclic steady state (conditions of Run 2).
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FIG. 6b. Relation between compositions in mobile phase in the hot and cold half-cycle in cyclic
steady state (conditions of Run 2).
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-

[1.70 119 0 0 0 0

052 1.364 070 0 0 0

1 0 052 1364 070 0 0

MI= "2 | o o 052 1364 070 0
0 0 0 052 1364 0.0
o o0 0 0 052 1.884]

The eigenvalues, calculated as outlined in Section 5, are

Ao = 0.1050
A, = 0.2522
A, = 0.4838
X, =0.7336
A, = 0.9239
As = 1.0000

These calculations were performed with eight significant figures.

In Run 1, the initial condition is that all toluene fractions are identical and
in equilibrium with the water fractions with the following phenol concen-
trations (i =0, 1,...,N):

q = x;(0) = 1.18 g phenol/L toluene

} at equilibrium at 16°C
»:(0) =0.826 g phenol/L water

so that the total amount of phenol is

Q = 0.290 g phenol
Then from Eq. (28) we calculate
x§=2.324 g phenol/L toluene
The final steady state is then given by Eq. (26):

[ x§=2.324 ]
xF=1.726
X{(=)= | x§=1.282
x$=0.953
x§=10.708
| x¥=10.526

Now, we should like to know the composition at an arbitrary cycle n. In
principle, we would have to calculate [P~!] in order to use Eqs. (17) and (18)
or calculate the [A;] in order to use Egs. (19) and (20). We shall see that
these tedious calculations may be partly avoided if only estimations are
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’sought and for » sufficiently large. Equation (17) or (19), when developed,
leads to expressions of the form

agog + ag A + agA; + ags\i + agdh + x¥

aIO}\g+all}\lll+ ................... +x7{<
Xc()’l) = aZO}\S T -+ xi‘

asohy

40N

S PR + x%

the last column corresponds to X%(=). Examination of the successive powers
of the A’s shows that the contribution of the smallest eigenvalues rapidly
becomes negligible. This is illustrated on Fig. 7 where In Alis plotted against
n. We observe that Aj becomes negligible with respect to 1 (A < 107%) as
early as the third cycle, A} around the fifth cycle, and A} around the tenth
cycle. The contribution of A; persists until the 20th cycle, and that of A, until
the 90th cycle. These contributions are somewhat modified by the factors a;;,
but these actually reinforce the importance of the largest eigenvalues, Figure
8a shows a comparison between the rigorous curve (full line) and the
approximation obtained by neglecting the contributions of A;, A,, A;. This
relation is expressed by

X(n) — X(=) = qCA} (29)
with

—1.024
—0.563
C= |-0.090 and g == 1.18 g/L
+0.339
+0.540
+0.615

It is seen that this approximation, besides showing the correct trend, gives an
estimate better than 10% for n > 3, better than 5% for » = 10, and better
than 1% for r = 20. For all practical purposes, it thus seems sufficient to
calculate the matrix [A;] corresponding to A;= X\, in Eq. (19) or, in other
terms, to calculate the two lines in [P~!] that correspond to the two largest
eigenvalues.

Note that Eq. (29) is comparable to a result established by Pigford et al.



13: 42 25 January 2011

Downl oaded At:

STAGEWISE LIQUID-LIQUID EXTRACTION 603

10"

10°

oy Al

s w5 20
n, number of cycles

F1G. 7. Plot of A!'as a function of the number of cycles n (logarithmic ordinate).

(26) for linear packed bed parapumps after a certain start-up period. Using
their notation, their Egs. (16) and (17) may be put in the form

1 —-56\"
) — D=y — B = <-1—+b_) Yo

which expresses that the ““distance” from the steady state for top and bottom
reservoir concentrations is a power function of the number of cycles.
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8. DISCUSSION OF EXPERIMENTAL RESULTS

Experimental Runs

The experimental procedure is that described in Sections 2 and 3.

Figures 8a and 8b show calculated curves and experimental points for the
phenol concentration in the six toluene fractions, and in the five water
fractions respectively, in Run I. The measurements were made at the
beginning of the cycles, after equilibration at the cold temperature, by syringe
withdrawals in each phase. The conditions for Run 1 were given in the
previous section. Similarly, Figs. 9a and 9b show the results of Run 2 for
which the parameters are

a(20°C) = 0.66

B=1.27
a’(60°C) = 0.52
T = 35 mL of toluene
p=1.35
W =26 mL of water
\ ’,5.0_,-——"“0_—’-—0_——

x¢, phenol concentration in toluene (g/f)

———— s
;\\0 X o
\O%OM
T 30 20 e

n, number of cycles

FiG. 8a. Transient regime of Run 1: Toluene phase. Rigorous solution: Full line. Highest
eigenvalue approximation: (O). Experimental measurements: (X). (Concentrations are
measured in the cold half-cycle.)
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¥ phel'\% concentration "“o water (g/0)

o
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v

I n A A, A oy

1N 21 30 40 50 o
n, number of cycles

FiG. 8b. Transient regime of Run 1: Water phase. Symbols: See Fig. 8a.

As expected from the smaller value of 8, the maximal separation in Run 2 is
smaller than in Run 1.

Dissymetry of Light Phase Transfers

After about 10 cycles we observed that fraction T’ of toluene had become
much smaller than the others, and that fractions 7}, and 7', had become larger.
This phenomenon amplified to the point that around the 20th cycle
practically no toluene was left in fraction T's and the experiment had to be
interrupted. On the other hand, the volumes of water remained practically
constant, with a slight excess in the first stages (5% difference between first
and fifth stage).

A detailed analysis of the phenomena involved in the light phase transfer
leads to the following;

The water level, in vertical position during transfer, is slightly below the
overflow tube. This entails that no water is transferred, but about 1 ecm? of
toluene remains stationnary in each stage.

Evaporation was verified to be negligible, the system being hermetic.

The solubility difference of water in toluene between 20 and 60°C should
entail a net transfer of water toward the first stages, of the order of 0.1% per
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Fi1G. 9a. Transient regime of Run 2: Toluene phase. Calculated without dead volume: Full line.

Calculated with dead fraction y = 0.1: dashed line. Experimental Measurements: (X).
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F1G. 9b. Transient regime of Run 2: Water phase. Symbols: See Fig. 9a.
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cycle. This is consistent with the observation above in direction, but smaller
in amplitude.

The dilatation of water from 20 and 60°C is about 1.5%, not enough to
entail water transfer, but enough to entail a net transfer of toluene of the same
amount at each cycle, thus 15% after 10 cycles, toward the first stages.

A slight dissymmetry of the tubes on one side can explain an important and
cumulative net transfer. Suppose the volume available in the vertical
position, up to the overflow tube, is smaller by 1.5% on the side of the
backward transfer reservoirs. This implies an excess of toluene transfer in the
backward direction, thus toward the first stages, of about 15% in 10 cycles.

The two latter effects (dilatation and dissymmetry} may explain the net
transfer of toluene observed, which is in the average about 30% in 10 cycles.
These effects may be in principle offset by a proper adjustment of the holdup
volumes of the stages. This was tried by working the glass of the apparatus,
and resulted in a net transfer of toluene in the opposite direction! It is
expected that this net transfer of light phase would be a lesser problem in a
partial reflux system.

Other Uncertainties

The cold source was not thermostated, and varied by 2 to 3°C during the
experiments. This is expected to have a nonnegligible effect, but was not
corrected for. The equilibrium determinations were delicate due to having to
take samples with a syringe at two different temperatures from two different
phases with different dilatation coefficients. The dilatation effects were eval-
uated and accounted for, but errors remain due to evaporation at 60°. The
time allowed for equilibration between a temperature change and a transfer
was set to S min after trials which indicated that no composition change was
meaningfully detected after that time.

The purely analytical uncertainty (of the order of 2%) is expected to be
small with respect to the uncertainty above.

Conclusion

In spite of these various uncertainties, the experimental data seem to agree
reasonably with the calculations, at least for a small number of cycles (6 or
11). The more important discrepancy observed in Run 1 for 21 cycles is
attributed to the volume variation of the toluene fractions (fraction 7’5 had
practically disappeared at Cycle 21), entailing a variation of p and thus of the
elements of the matrix [M] from cycle to cycle.
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9. EXTENSION OF THE THEORETICAL APPROACH

The preceding discussion illustrates that in any real experiment we would
be faced with imperfect phase transfer, volume variations of the fractions,
volume differences in the stages, etc. In addition, the mode of parametric
pumping considered here is restrictive; it ignores partial reflux and muitiple
transfers per half-cycle, situations studied elsewhere (8, 9) from the point of
view of the cyclic steady state. We should like to give a hint on how the
present approach can be extended, without major difficulty, to account for
some of the situations mentioned above. For this purpose we shall examine
how the basic equations are altered separately by the different effects.

Existence of a Dead Volume of Light Phase

In the experiments presented, we mentioned that about 1 cm® of toluene
was not transferred when the apparatus was tilted to the vertical position. Let
us characterize this “‘dead volume™ D by its ratio ¥ to the volume of the water
fractions.

y=D/W (30)

and we suppose this ratio is constant and the same for all stages in forward
and backward transfer. When the material balances (Egs. 1) are rewritten
taking this hold-up into account, one obtains the same form as Eq. (5) but
with o replaced by p —y, a° by &+ v and a” by o’ +y (so that the
denominator p + a" in Eq. 5 is unchanged). A similar property holds for the
backward half-cycle, and finally the whole approach outlined so far remains
valid providing the substitutions indicated above are made in the elements of
the matrix [M]. The discontinuous lines in Figs. 9a and 9b show the result of
such a calculation, made with a 109 dead volume of solvant (y = 0.1) which
slightly overestimates reality.

Intuitively, the effect of y can be foreseen by considering the system as
having a lower p and higher a’s but a lower effective 8. The effect on the
cyclic steady state is seen immediately from Fenske’s equation (eq. 25), with
the data of Run 2:

xF _[ a‘+'y:|5 {=3.29f0ry=0
xp U ab by =2.77fory=0.1

The effect of a smaller p and larger a’s is favorable to speed of convergence
but may be offset by the decrease in j.
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Unequal Volumes of Fractions

A simple modification accounts for the volume of water being different in
each stage and the volumes of each toluene fraction being different, providing
these volumes are constant (same volume transferred back and forth). It
suffices to take a different p, for each stage and for equilibrations at different
temperatures. In the forward matrix [6,] (Eq. 8), the unique p will be
replaced by p”, different in each line, and similarly, in matrix [}, p§ will be
introduced. The product matrix [M|] remains tridiagonal, and the methods for
eigenvalues and eigenvector calculations are unchanged. All the other
properties mentioned still hold.

Volume Variations of Phases

As discussed earlier, important variations of the volume of the toluene
fractions may be caused by a geometric dissymmetry of the apparatus in
forward versus backward transfer and by dilatation of the water phase. These
effects can be quantified and accounted for in writing the material balances.
Unfortunately, they will cause the value of p to change in each stage and a¢
each cycle. There is therefore no unique matrix [M] and the approach
presented fails to apply.

Several Transfers per Half-Cycle

Suppose the apparatus used in the present work was equipped with an
additiu..al reservoir in series at each end. Then seven toluene fractions would
be used, and there would be two successive transfers in the same direction at
each temperature. The cyclic steady state of such systems has been
extensively studied (8). The matrix formalism can be used conveniently by
noting that each transfer of light phase followed by an equilibration is
described by a bidiagnoal matrix similar to [6,] or [6,]. Let us consider for
example a parapump with two stages and four light phase fractions, thus two
transfers per half-cycle. By an approach similar to that leading to Eq. (11), it
is shown that the matrix [M] describing the complete cycle is the product of
the successive bidiagonal matrices describing each transfer:

[M] = [0.]18,,11041[6:] (31)

where
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[p+a 0 0 0 [p+a" 0 0 0 7

1 0 p+a® 0 O 1 o’ p 0 O
[002]::__7 h lgz‘llz Y h

p+ a 0 @ p 0 p+a 4} a" p 0

i 0 0 o' p L 0 0 0 o+at

[p o 0 0 [p+a° 0 0 0 ]
1 0 »p af 0 1 0 o o 0
(%] =T " 160] = — .
p+a 0 0 pt+a 0 p+ 0 0 p «@

LO 0 0 ptea" o 0 0 p+a"J

[M] is no longer tridiagonal but, in the present case, comprises five diagonals,
The simple numerical methods for calculating eigenvalues and eigenvectors
of tridiagonal matrices no longer apply, but otherwise the general method is
unchanged. Notice also that different definitions of [M] may be introduced,
depending on how the beginning of the cycle is defined. These various forms
differ from each other by a circular permutation on the bidiagonal matrices

6.

Partial Reflux Parapump

We adopt the description given by Grevillot (9) for one transfer per half-
cycle in a pump where fresh feed is added at each half-cycle in an
intermediate stage and with a different reflux ratio at each end. The operating
scheme of such a pump is summarized on Fig. 10. The equations describing
the operation of the lower section during the cold half-cycle and the upper
section during the hot half-cycle are that of the simplest case; that is, Egs. (1)
to (10). The other equations are those for a hold-up y in each stage, as
explained in a previous paragraph (p replaced by p — v, @ by & + y). Special
material balances must be written for the feed stage. The result may be
written in the following form:

X"(n) = [8,]X°(n) + F, (32)

X‘(n + 1) =[6,]X"(n) + F. = [6,.][6,] X‘(n) + F, + [8]F, (33)

where [6,] and [6,] are bidiagonal matrices and F,, and F, are column vectors
representing the feed contribution. Table 1 below gives the elements of these
matrices and vectors, corresponding to the stages in which the conservaticn
and equilibrium relations are written. All other elements are zero.

X is the feed composition, assumed constant here. The feed vectors F,and
F.have each a single nonzero element, owing to the fact that the feed is added
in a given single stage. The nonzero element is not on the same line in the two
vectors because the feed is mixed with a different mobile-phase fraction in
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FIG. 10. Operating scheme of partial reflux staged parapump.

the hot and cold steps. Note that a feed distributed over several stages can be
accounted for by the same Egs. (32) and (33), but different elements in the
matrices [f,] and [,], and additional nonzero elements in F, and F,,

The general solution of the first-order recurrence of Eqs. (32) and (33),
relating X(n + 1) to X°(n), is easily seen to be

X(n)=[M]"X(0)+[I+M+M?+... + M*"![F, + [0 ]F,] (34)

where [M] = [6.][6,]. Equation (34) is to be compared to Eq. (14) (note that
[M] is not the same in these two equations). The matrix [M] is still
tridiagonal and the methods for calculating the eigenvalues remain valid. The
geometric matrix series [I+M + M2+ - -+ + M"7!] can be rewritten by
applying Sylvester’s theorem (Eqs. 19 and 20) to each term, so that a scalar
geometric series appears on each eigenvalue. If all X’s are different from 1,
Eq. (34) becomes

N 1 — A7
X(n) =j§0[Aj][>\;?X(0)+ﬁfF] (35)

J
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where [A] are matrices obtained from [M] by applying Eq. (20) and F is the
overall feed vector, given by

[ 0 ]

0
XF PYn
(0o +a)Np +a |ylo+ a(’;) + v’

F = Fc + [oc]Fh =

e

the two nonzero elements of F are on lines f and f+ 1.

If any eigenvalue was larger than or equal to I, the series I+ M
+ -+ + M"! would not converge and no steady state would be reached.
On physical grounds, we may thus state that all eigenvalues are smaller than
1. Under these conditions the cyclic steady state is not obtained directly as
an eigenvector of [M], but by letting X(n + 1) =X(n) in Eq. (33) or
n— < in Eq. (35):

N
Xe(=)=[1-M|]"'F=2 g (36)
j=0 1 — }\j
We know from a previous publication (9) that the cyclic steady state can be
geometrically represented by a McCabe-Thiele diagram somewhat more
complicated than that of total reflux (Figs. 6a and 6b), and that the analytical
expressions for the separation factor are quite involved. There is thus little
hope to bring Eq. (36) to a more analytical form by simple manipulations.

APPENDIX A: CALCULATION OF EIGENVALUES OF | M| (20)

The eigenvalues of [M] are calculated from the equation

0 0
0 0
Py(A)=det | M —AI| = c 0

o OO0 00
ff
(=]

c
b—pA
a a+tb—pA] (Al

Since the determinant is tridiagonal, it may be expanded easily by elements
of the last column for example. Let Py_;(A) be the determinant obtained by
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deleting the last row and the last column, and let Py_{A) be the determinant
obtained by deleting the j last rows and columns. We then have (with N = 6)

Pg(A) =(a + b = pNPs(A) — acPy(N)

Py(N) = (b = pA)Py(N) — acPy(N)

Py(X) = (b — pA)P3(A) — acPy(A) (A2)
Py(N) = (b — pM)Py(X) — acP (M)

Py(N) = (b = pN)P(N) — acPy(N)

Py(X) = (d — pMP«N)

PyA) =1

A trial value of A is assumed and the successive expressions P,(i = 1 to N)
are calculated. An eigenvalue is found when Px{A) = 0.

The localization of the eigenvalues, and thus the trial values, is facilitated
by the fact that the expressions P; form a Sturm series which permits the
following test: Assume a value A’ and calculate the sequence Py . . . Py. Let
V(X\') be the number of sign changes in this series. Assume another trial value
N and determine in the same way the number of sign changes in the sequence
V(X"). The difference V(X') — V(") gives the number of real eigenvalues in
the interval (X', \"’). This property may be used to show that all eigenvalues
are real. We assume A’ very large and positive and A very large and
negative. It is then easy to see that

A0 AN K0

Po=1>0 Po=1>0
P,=d—-pA<O0 P,=d—-pA>0
P,=(b—p\NP, —ac>0 Py=(b—pNP,—ac>0
P, <0 P,>0

P,>0 P,>0

P, <0 P> 0

P> 0 P> 0

The numbers of sign changes are V(N') = N and V(\”) = 0, and the number
of real eigenvalues, positive or negative, is N. Thus all eigenvalues are real.

The Sturm sequence (A2) may also conveniently be used to show that
A =1 is an eigenvalue. For A = 1, we have
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Py=12>0

Pi=d—p=—-—alp+a)<0

P, =(b—p)P,—ac=—aP,

P, = (b —p)P, — acP, = —aP,—cP,—acP,=—aP,
P, = (b —p)P;_; — acP;_y,=—aP;, —cP;_;—acP;_,

J

and since

J J

we have
Pj - _an—l

For the last polynomial Py, which represents the characteristic equation, we
have

Py=(a+b—p)Py, —acPy,

with
a+b—p=—c
and
Py, = —aPy_,
thus
Py=0

and A =1 satisfies the characteristic equation and is thus an eigenvalue,
independent of the values of the parameters. Incidentally, this calculation
shows that V(X' = 1) =N — 1. Since V(X' > 0) = N, there is a single real
root in the interval (+1, +) which is precisely A = 1. No eigenvalue can
thus have a value larger than 1. A somewhat more tedious calculation can be
made for X" =0, showing that ¥ (A" =0)=0. This ensures that all
eigenvalues are positive, and finally, we must have

O<A0<A]<"'<>\N=1

APPENDIX B: THE STRUCTURE OF [M]~

For large values of n, that is, at cyclic steady state, [M]" must satisfy the
N + 1 equations
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[M]"X(0) = X(*=) (B1)

independently of the initial distribution X{(0). The concentrations
(90,915 ... ,qy) of X(0), and the concentration (x¥, x¥, ..., x¥) of X(=)
are related only by the condition of conservation of the mass of solute in the
whole system. This condition is expressed by:

o= W[ pqqet ﬁl(p+ac)q,~] = W[ px§ + l_zllil(p + a”)xﬂ (B2)

Replacing x¥by x¥87" from Eq. (24), factoring out x¥ in the right-hand side,
and reorganizing, we obtain

N
Aqo+ B2 g;= x} (B3)
where
P pta

A= . B-- 4 (B4)
pt(pta)lp™ g

Clearly the N + 2 equations (B1) and (B3) may hold for any set of g; only if
they are redundant. We may thus identify, for example, (B3) with the ith
equation of (B1), which we write (i=0,1,... ,N)

Mo + mag, T ...+ mygy= x¥=x§p~’ (B4)

and we obtain

A forj=
m,-,ﬂ*={ o/~ 0 (B6)
Bforj=1,...,N

The elements m; of [M]” are thus completely identified by Eq. (B6), together
with (B4). [M]” may be visualized as

A B 2 2 B
Ap~! Bp™! ):7: U BB!
Ap~? Bp? 1 Bp?

M}~ = ' : (B7)

AB—N BB“N .......................... Bﬁ‘N
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It may be verified that this matrix is invariant on multiplication on the left or
on the right by [M].

It is interesting to look at the other possible approach starting from Eq.
(17):

[M]” = [P][A]"[P7'] (B8)

Clearly A” reduces to the single element 1 in the last row and last column, all
other elements being zero. The product [P][A]” is a matrix with the first N
columns of zeroes, the last column being the last column of [P]; that is, the
eigenvector belonging to A = 1. Multiplying this matrix by [P '], we should
recover the result of Eq. (B7). It is easy to show that the only elements of
[P™'] that appear in the product are the elements of the last row, which are
the cofactors of the above-mentioned eigenvector in [P]. Identifying with

(B7), we conclude that the last row of [P™'] is (4BB ... B).

SYMBOLS

abcdep coefficients in material balance equations, defined by Eq.
(13) (dimensionless)

A, B quantities defined by Eq. (B4) (Appendix B)

m; elements of matrix [M]~, defined in Appendix B
{dimensionless)

n number of cycles (dimensionless)

N total number of stages (dimensionless)

P,(N) minor determinants of matrix (M = Al), defined by Eq.
(A2) (Appendix A) (dimensionless)

Qos G1s ,qN initial values of xg, xy,...,xy (g/L)

0 total mass of phenol present in the system (g)

T volume of toluene fractions (L)

w volume of water fractions (L)

x;(n) phenol concentration in toluene (mobile phase) fraction
numberj (=0, 1,...,N), in cycle number #n (g/L)

x¥ values of x; in cyclic steady state (g/L)

Xk ith component of the kth eigenvector (f=1,2,...,N;
k=0,1,...,N) defined by Eq. (15) (g/L)

XF phenol concentration in feed for open parapump (g/L)

yin) phenol concentration in water (stationnary phase) in

stage number k (k= 1, 2, ..., N) and in cycle number n

(/L)
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slopes of the equilibrium isotherms (concentration in
water versus concentration in toluene) at the cold and
the warm temperature, respectively (dimensionless)
relative thermal affinity defined by Eq. (24) (dimension-
less)

dead volume ratio, defined by Eq. (30) {dimensionless)
eigenvalues of matrix [M] (dimensionless)

ratio of volumes of toluene fraction to water fraction
defined by Eq. (2) (dimensionless)

Vector and Matrix Quantities

[A]

C

Fc’ Fh
(1]

[M], [6]

[P], [P71)
X

[A]

matrices defined by Eq. (20)

column vector defined by Eq. (29)

feed vectors in open parapump, defined by Egs. (33)
unity matrix

matrices of coefficients in material balance equations,
defined by Egs. (8), (10), and (12)

matric of column eigenvectors of [M], and inverse
column vector of phenol concentrations in toluene frac-
tions (xg, X1, ..., Xy)

diagonal matrix of eigenvalues

Indices, Subscripts, and Superscripts

* ()
¢ h

(n)
b k

define the cyclic steady-state

designate variables defined at the cold temperature and
at the hot temperature, respectively

number of cycles

refer to number of a toluene or water fraction
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